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~ymp~~c analysis of ~ee-~~ dynamic equatioua of a thin piate 
was used earIier in [lf to construct the inner state of ttress and to indicate 
the ways of obtainiug more accurate redults. The present paper investigates 
the problem of obtaining, by means of asymptotic methods, valfd boundary 
and initial conditions corresponding to the two-dimensional dynamic squat- 
ions, and of establishing their asymptotic accuracy. 

1. Qniaider the problem of reducing the ~~e-~rn~~al dynamic prob~m of 
the theory of 8laaticity for a thin plate, to the two-dfmendozial one, ~~~~~ 
Of ~atrSfyiitg the boundary aud iriitiaI conditions included. We note that in couaidcr- 
iug the inner problem in [Xl, the author used the initial ratio of the diaplaccment 
i~t~~~ co~~d~g to the b8nding motions of the plate. For thtr reason, the 
deformation in the pIane of the plate was of secondary importance. If the p&ate is 
homogeneous, then the. bend&g is completeiy separate from the deformation in the 
plane of the plate in both static and dynamic casea, and their relative intensities are 
in no way d8pendent on each other. 

We also note that in reducing the three-dimeruional probIem to the two-dimens- 
ional oue, there is no need to define a p r i o r i the asymptoties of the state of 
stress in question so as to confirm subsequently that the iuitial assurnptkn8 were correct, 
We canuot deal with this probkm in more detail, but we can show that either one, or 
the other asymptotica foIIows automatically from the at~lmption ma& about the way 
in which the state of stress in question varies in different directiona. 

Let us coluider, in a norrow regiou of length 21 and thickness 2h I a phe?aom- 
enon with characteristic dimension of the deformation patterns In , and characteris- 
tic time to . Obviously we can expect any significant airnpIifications in the initial 
problem of the theory of elasticity only in the cats of phenomena for which I, is 
much greater than h I and the time to is much longer than h fm*, the 
latter commeacurabIe with the time in which the perturbation traverses the distance 

h in an elastic medium. An inner state of rtmas sattsfiea tbeae coudition~, and its 
determimktmn can be reduced to an iterative process at each stage of which certain 
two-~~~~~~ equations must be solved. In constructing this state of s , we 
take D&O account the equations of the theory of elasticity and the boundary conditions 
in terms of the s&eases at the face planes. In order to satisfy the bcmdary condfblons 

at the side surface and the initial oonditiurs of the originaI problem Of the theory of 

e&u&y and to formulate the boundary and initial conditioua of the inner probkm, 
we introduce certain, rapidly changing states of stress which, in a certain sense, exert 
little influence on the inner state of stress. 
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2, Let us introduce the dimensionless variables. We refer the displacements to 
h , and the stresses to the modulus of elasticity E. We investigate the states of 

stress varying in different manner in different directions, remembering that our argu- 
ments must be relevant to the inner problem, as well as to the rapidly changing states 
of stress. Let the quantities rl, r2 and rs (rI = pI / q, r, = pz / q where 
PI, PZ and q are integers) characterize the variability of the state of stress over the 

space variables 5, y and z . This means that for each variable there is a correspond- 
ing characteristic dimension 21 = leri (i = 1, 2, 3). Since the characteristic 
dimension in the direction of the z -axis is h , we have rs = 1. The charact- 
eristic time ts is given by 

t, = e*-‘2 1/pIE 

and the parameta CO charactezfzes the variabflity of the state of stress with time. 
Let us carry art the scale expansion transformation, referring the variables z, y, 

z and t to the corresponding characteristic dimensions 

Having passed to the new variables, we seek solutions of the equations obtained 
from the Lami equations, for any state, of stress, in the form of asymptotic series in 
terms of the small parameter A = erlq 

vz = ex 3 h’v$), . . . 
r=o (2.1) 

and using the relations of Hooke’s Law we obtain stmtlar expressions for the stresses. 
The choice of the quantf ty x in (2.1) is somewhat conditionaL For example, 

in considering the inner state of stress it can be related to the intensity of the external 
forces. The main problem which must not be disregarded consists of the fact that, in 
the expansions of the type (2.1) for the stresses and displacements, some of the first 
tams vanish identically. The number of such terms differs for the different stress and 
displacement components, and is automatically defined by the character of the state 
of stress in quation. We can state it more accurately by saying that the number dep- 
ends on the variability of the state of stress in different directions. Determination 
of the number of the first, identically vanishing terms in the expandons of the type 
(2.1) will lead, in the end, to atablishing the asymptotics of the state of stress in 
question, since the intensities of all the stresses and displacements will then become 
knOWIl. 

3. The inner state of stress changa little in the plane of the plate, and we have 
O< rt < 1. We shall restrict ourselva, for simplicity, to a single variabiltty 

index r in the plane of the plate, using the larger of rl and r, as its value. The 
choice of the value of x in (2.1) can be made dependent on the condition that a 
normal load applied to the face planes is independent of the relative thickness of the 
plate, Then, for the deformation in the plane of the plate, we have x = - 3 -/-3r 
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and for the bending we have X = - 4 -k Jr. 
We can easily obtain the rektiosi comwting the parameter w cbaxactsrteiug the 

variability of the process with time with the value of r e by making certain that the 
inertial terms appear ti the two-dinenrion-irl equations of the Jaaer state of rkaor in the 
zerotb approximation. We have CO = 1 -j- r for the deformation in the plane of 
the plate, aad u = 2r for the be&Ming. 

4. A state of stress in the bamdary layer which appears &ear the plate edge [2,Sl, 
dimi@shes rapidly with iocreasing distance from the edge. Wrodwtion of Ws state 
of stress makea it po&&le to satisfy tlw boundary cafe, -la&d in terms of 
the theory of elasticity~ at the side surface of the plate, to establish the bcamdary cond- 
itions of the inner problem, and to determine more accurately the state of stress neat 
the edge, 

The boundary layer near the edge X = 0 &mws a large degree of v~~~~ in 
the Z- and z-directions, and SMW ~tisbfllty ad the WMX ttate of &MS in the 

y -diroctlon and with time. Thus we have tht following va,frtes for Tulsa varkability 
indices in the 5, y, z and d directfooj: 

The value of x in (2,1) will be chosen eq;lal to the highest order of the quantities 
of the inn= probkm appearitxg in t&e bowMy con&&Bs at the &de aaxface;. We 
obtain vx(@) and v,!#) from the foHow$ng e@uatioBs of pti@ fa a b&f- 

Here A,* and p* are the Lam4 cuxstants r&&red to the modulus of uias%city E, 
They cam be exptcc#6 in terms of Po&sori*s ratto Y in the form 
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[ 

alp ad") &lp-ePf 

ag+ v TS*+* all I ktl 
=O 

and the determination of yY@) is reduced to solving the antiplane problem fat a 
half-strip 

Thus the d&xrmination of the boundary layer in the dynamic as well as the static prob- 
lem separates into solutions of the plane and antiplane problems for a half-strip. For 
the dynamic proceasea for which 0 < o < 2, both these problems have a quasi- 
static clzaracter, The inertial terms do not in general appear in the equations of a 
sedes of first approximations, and in the approximations in which they do appear, they 
are determined in terms of the quantititet obtained from the preceding approximations. 

It can be shown that the two-dimensional dynamic equations of the inner problem 
couepnding to the accuracy of 0 (e+ *‘) have the same boundary cmditim u these 
of the staticcase 123. It follows that for the dynamic problems not only the bwdary 
conditions of the classical theory, but also the stronger ccrrkdftions f2J have the same 
farm as those of the static problems. The bamdary conditions corresponding to the 
classical theory are of acauacy of 0 (el-r) , and the stronger boundary conditions 
of 0 (ES++) . 

5. Next we mder the problem of introducing a rapidly changing state of stress 
which, although it does not, in a ceztair~ sense, exert any appreciable inflwnce on 
the inner state of stress, aevertheless it allows both stated to satisfy the initial condit- 
ions of the initial problem of the theory of elasticity, 

In the four-dimensional space 2, y , 2, t the plane t = 0 represents, fot the 
phenomenon under consideration, a kind of a boundary, This suggests a possibility of 
intmduclng into our discus&on an auxilllary state of stress with large vadabiUty with 
reaper3 to time, hut with the same vadability in the directions of the X, # -axes as 
the inner state of stress. Thus the vadability indices for t&z auxilliary state of stress 
inthedirectionsofthe I,y,zand t axesare r, <I, ra<l, r3 =I, o =2. 

We choose the value of x in (2.1) to be equal to the largest order of displace- 
ments in the inner problem, and we obtain the following equations for 
u,(s) : 

~,~f~f (z#) and 

a@ 6%fS) 
--r-2(1 +v,-$- I= - w Rf’ NY/) 
a$d 

z (1 +V)(~ -2v) aV 
ag'-- f-v -=- Rf) 
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fit”= 1 
a &p?+Pf a,~-?+Pl 

2(f -q x at ( + r3r ) + ,&---$ AI$***~~) 

wlleu1;=r fi , zero stress conditioas must prevail, i, e. 

The aomion of this problem consists of ia solution of the hamogsntGu equatton 
satisfy@ the null bamdq coa&tim and qw.H’ied tnlthl ~~~~dftioar. and of the wlu- 
tim of the inhomogewsaa equation with UkunogeneauS bauMtary condithna and zero 
initial condttioos. 
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Let u(L’t) be an even function of g . If cp (5, 4 = 0, q (z) = 0, 
then the solution of the wave equation has the form 

(6.4) 

The first term of (6.4) yields a part of the solution independent of ff me, the second 
term a part l&early dependent on time, and the third term a part oscillatory with 
respect to lime. The solutton u (g, 7) will be pure acillatory with respect to 
time ff and only if the mean values of the initial conditfons (6.3) vanish, i. e. if 

1 

SfWC==O~ ‘SWd5=0 
0 0 

(6.5) 

and we shall call (6.5) for brevity the oscillatory conditions. 
If Q, (6, T), I@ (T) in (6,l) and (6.2) are not zero but purely oscillatory fact- 

ions with respect to times then the solution of (6.1) with conditions (6.21 and zero 
initial conditions tt obviously a function purely oscillatory with respect to time. 

Let uff;,tf ~~~d~~~~of 6. Then the solution of(6.I) with condi- 
tions (6.2) and (6.3) will always be a function purely clcfllatory with respect to time. 
Thus in the case of the functions odd in 6 , the solution of the wave equation will 
always be oscillatory with respect to time, Fortheevenfunctiomof % thiawillbe 
true only when the condftiont of oscillation are met, i. e, when the mean values of 
the initial condltionr vanish. 

7, Le us now consider the problem of satisfying the initial conditions of the parent 
problem of the theory of elastkfty, of formulating the initial conditions of the two- 
dimensional inner problem, and of otablishing the& asymptotic accuracy, using the 
example of tmnswrse motions of the plate, the motions caused by a discontinuous 
4ziuuiF in the surface loading at the instant t = 0 , 

Let the plate be at rest when t < 0, but be at the same time deformed by the 
acttm uf some snrface load. When the suface load change discontinuously at the 
instaut t = 0, theplatefsutinmotion. In the B of the initial problem of the 
theory of elasticity, the three displacement components assume at the initial instant 
their prexribed values, and the three velocity components vanish. The following 
boundary conditions hold at the face planes of the plate: 

EC,, j2;-il= G- GM, Eaz It-hx = -f- ~z- (t < 0) 

EC,, &I = TX+ (~1, J% it-&~ = If rz+ V > 0) 

The inner state of stress of the plate can be represented, for both t < 0 and t > 0, 
fn the form of asymptotic series of the form (2.1) in which X. = -4tJ + hp. The 

q~antftfer v,(“) (x#) a& z$(‘) are polynomials in f, and their degree incre;ues wfth 
fncxC=ing order of approximation. We have 



f41-41’) = (4f7-4p) 
VZ vzo 

+ g2@+4iJ) + jaU~y-4Pl 

etc. At ? = 0 alI quatxtitiea wtcept v(Ts+@) (q/), V~~--4p) appeazing in the 
right hand ddes of (7.1) are coattnuout. The exceptesI qw~tMes w&ego a jump at 

z ;1: 0 , the magnftude of whkh b gfveo by the jump in tht vahte of t&t3 s&ace 
load 

The appearance of the factor hpWp in the above condit@s indicates that the contri- 
buttan of the tangeutial &ace fkces can be compared with the contdbuffon of the 
normal surface foxces osB%y fn the case when hQ-Pz, N T, * Since by de&&ion 
z, N il”, we have Tr N 3r;Q+p. 

Let us now bring in the problems A,(‘) (z$/) and A?(‘) refer&g, re&psctively, 
to the determination of the displacements Vx(*) (sy) and vJz(1) for the state of 
stress purely oscfUa&xy WMI respect to time, 

The soh~tio~~ of the pmbbma A,(*) satfafy, for s < 46 - 4p the hmmgen- 
txm equattonrr, hoxnogcnmus bcutiary conditMis and the folkowing initial comWions: 

The requirement that the sot&ions of the probk;ms AZ(@) (s < % - 4~) satisfy the 
co~ditims of ctMiW&n (6.51, yields the haitial cmditfons of the ~~di~~~a~ 
innerproblemfor z> 0 

f7.2) 
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After satisfying the conditions of oscillation, the initial conditions of the problems 
A,(s) (S < 4q - 4~) become homogeneous and the solutions of these problems va- 

nish identtcally. 
Let us consider the problem A !4q4r” which reduces to that of solving a homo- 

geneous wave equation with homogeneous boundary conditions and the following initial 
COnditiOns: 

The condition that the solution sought obeys the conditions of oscillation (6.5), yields 
the stronger initial conditions for the two-dimensional inner problem 

l&y) Ir_+O = uyp) If= -0 + $ * F x (7.4) 

The initial conditiom (7.3) of the problem A~4q4P’ with C 7.41 taken into accout, 
assume the form 

From the initial conditions (7.21, (7.4) specified for different approximations, we 
can pass to the initial condftions not containing any approximation indices, but detorm- 
ined to within the same asymptotic accuracy. The initial conditions comrponding 
to the two-dimeusional equations of the inner problem have the form 

with the accuracy of 0 (e4-“) and 

(7.5) 

with the accuracy greater than 0 (P’) . Here . uzo = hz,,. 
‘Rm, using the asymptotic appmach to solve the bendfng problem, we haveobtain- 

ed only two specified initial conditions irrespective of the degree of accuracy; we 
specify, at the initial instant of time, the trzuweme displacements and transverse vel- 
ocities of the points of the middle plane. 

The number of initial conditions (7.5) with asymptotic accuracy of 0 (&a+) 
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is in full correqxrudence with the type of the two-dimenskonal equatfosl of the inner 
problem ccereapo&ng to the same detgme of asymptotre accuracy. For the higher 
degree of accuracy (higher than 0 (&“‘) 1 such a correspondence no kmger exists. 
We have two shaqened initial coudMons (‘7.61, but the two4mensioM equation of 
the inner problem conta&+s a fourth order time derivative. 

This confirms once again the need for using an iterative process to obtatn more 
accurate results, in the investigations of thin plates behavior. When the problem is 
solved by iterative methods, there is a full corres~e between the type of the 
equation and the number of initial and hndary CQIuiftfortt at each stage. 

We note that the strew6 a, (xy), cd are of the same order for the oscillatory 
state of strsu, as for the ismax proHem. When the strewa cm WV tJIy a= 
determined with the accuracy exceed&g that of the RfrcbhrrfiF --Love hy 

the oscillatory state of sttsl mast also be taken into account. 

8. We shall pause b&fly to formrrlate the prescdbed initial condftioas and lo 
establish their asymptotic accuracy for the two4imensional dynamic problem of de- 
formation of a plate iu i.ts plane. As an example, we shall conriduc ule problem of 
motion ax&&g in the plane of the plate as a result of a jump tn the value of the surface 
load. Let the boundary condftfccs at the face planes of the plate have the form 

Eo*s f&-f1 = f TX- (ZY), ES, 1+.&t = zt- (t < 0) 

E.b,z I&*, = * TX+ (?4), ES, 1&iI = rz+ (t > U) 

We use the same reasoniug as in the case of the bending motions of the plate. For 
plane motious of the plate we ffnd that the asymptotic approach yields, for each approx- 
imation, four initial co&Moru for two translations and two plane ve&o+es of the 
plate, the number correspond&g to the character of the two4 dynormic 

equatSoru. We have establtshed that the inMa con&t%ons 

%o t=+o = UmJ 1 I 
%xi 

I=-_o (Wh I az t=+o = 0 (XY) 

have asymptottc accuracy of 0 (e4-4r). 
We have also obtained the stronger initial condftfons with accuracy higher than 

O(rar-T . For the problem in qwation time conditions have the form 
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